
BEYOND L1 & L2: BENCHMARKING ADVANCED
REGULARIZATION TECHNIQUES IN NEURAL NETWORKS

Aksel Kretsinger-Walters
Columbia University

adk2164@columbia.edu

Mateo Juliani
Columbia University

msj2164@columbia.edu

December 24, 2025

1 Abstract

Regularization is a common tool in machine learning (ML) to prevent overfitting and improve
generalization. From a Bayesian perspective, regularizers correspond to priors, which provide
a way to express prior beliefs about model parameters. Yet commonly used techniques such
as L1/L2 regularization or dropout correspond to only a narrow set of Bayesian priors. In this
paper, we investigate the efficacy of a broader family of priors including 1) Smoothness prior - a
prior that penalize the neural net for having large inflection points, 2) Entropic prior - priors that
favor higher-entropy predictions, and 3) Automatic relevance determination (ARD) prior which
encourages sparse parameters. We test the performance of these priors across a variety of neural
network architectures (MLPs, CNNs, BiLSTMs, Transformers, and VAEs) and tasks. Our results
show the Entropic prior can outperform traditional L1 / L2 regularization while having a similar
computation cost. The ARD and Smoothness priors show less signs of outperformance and are
more computationally expensive.

2 Introduction

The practical argument for regularization is that adding a penalty term proportionate to the magni-
tude of model parameter weights discourages extreme model complexity and curtails the risk of
overfitting to training data. In support of this view is the bias-variance tradeoff, which states that
as model complexity increases, bias decreases but variance increases. The empirical success of
regularization techniques in modern deep learning, coupled with the intuitive mental model for the
tradeoff made when scaling regularization, has cemented regularization as a psuedo-standard in
machine learning practice.

From a Bayesian perspective, regularization can be interpreted as imposing a prior distribution over
model parameters [1]; within this framework, the regularization term corresponds to the negative
log-prior probability of the parameters. This Bayesian interpretation provides a principled way to
incorporate prior knowledge about the parameters into the learning process, ostesibly leading to
improved generalization performance.

The most commonly used regularization priors, L1 and L2, correspond to the Laplace and the
Gaussian distribution. The computational efficiency, intuitive justification, and empirical success of
these priors have made them the de facto priors for deep learning models [2].

In our work, we searched for alternative priors that could rival (or outperform) the performance
of L1/L2 regularizors, while offering different inductive biases. The majority of these priors
were proposed in the 1990s and early 2000s, but were ahead of their times: the computational
resources and large datasets required to train deep learning models were not yet widely available.
We re-examined these priors on a wide variety of popular deep learning architectures and datasets,
benchmarking the performance of each prior to the standard L1/L2 regularization.

3 Methods and Experiment Design

3.1 Models and Inference

In this paper, we use neural networks, denoted as Ω(x; θ), for a variety of data tasks. In this
section, we describe the general model format and inference methods used to estimate the posterior
distribution.

The generative process of the parameters θ of the neural network is as follows:

θin,k ∼ Pp(λin) k = 1 . . .K
θℓk ∼ PK(λmid) ℓ = 1 . . .L − 1

θout,j ∼ PK(λout) j = 1 . . . d.

where p is the input dimension, d is the output dimension, P is the probability distribution from
which each θ is generated from, L is the number of layers in the network, and K is the number of
parameters per layer. For any datapoint i, the response is drawn by yi|xi, θ ∼ expfam(Ω(xi; θ)).

Given a dataset D = {(xi, yi)}n1 , we optimize the following log joint probability:

L(θ) = log p(θ) +
n∑

i=1

Ω(xi; θ) · yi − a(Ω(xi; θ)) (1)

to get a MAP estimate of the network parameters θ using standard neural network optimizers
(Adam [3]) and automatic differentiation libraries (PyTorch [4]).

3.2 Priors

In Equation (1), the logp(θ) refers to the prior on θ. In the section below, we explore different
methods to parametrize p(θ) and explain intuitively how the prior may affect the neural network
function. For all priors below, λ refers to the scaling factor of the prior, n is to total number of data
points, H denotes the entropy of a random variable.

Gaussian Prior - The Gaussian prior assumes each weight θi of the neural net is sampled from
a normal distribution - θi ∼ N (0, σ2), where σ2 is a fixed value for all weights, typically 1. The

2

Gaussian prior goes by several different names in machine learning and statistic literature (ridge
regularization, L2 regularization, weigh decay) and is one of the most widely used regularization
techniques in machine learning [5]. In this paper we refer to it as L2 regularization. L2 regularization
can be implemented with the following equation: log p(θ) ∝ λ

∑n
i=1 θ

2
i , and is used in this paper as

a baseline prior, in addition to L1 regularization (see below), and using no prior.

Laplace Prior - The Laplace prior (referred to as L1 regularization) assumes the weights of the
neural net are sampled from a Laplace distribution with mean 0 and a fixed scale. This prior
typically encourages sparse weights for the neural network [6], and can be implemented with the
following equation: log p(θ) ∝ λ

∑n
i=1 |θi|. L1 regularization will also be used a baseline.

Smoothness Prior - The smoothness prior, as proposed by [7, 8], will penalize neural networks
with large "curvatures" or changes in magnitudes. Consequently, the neural net will become a
smoother function. The smoothness prior can be estimated by the following equation

log p(θ) ∝ − λ

2n

n∑
i=1

d(xi) where d(x) =
∑
k

(
∂2Ω(x; θ)

∂x(k)∂x(k)

)2

(2)

To implement Equation (2), we use Hessian Vector Products [9].

Entropic Prior - The Entropic prior, as proposed in [8], penalizes models for having a low entropy
output. In other words, it favors models that distribute the probability mass of its predictions more
evenly. Penalizing a model for low entropy outputs has proven successful in certain areas of deep
learning (such as reinforcement learning [10] and variational autoencoders [11]), however this paper
aims to test the efficacy of the prior in more general neural networks tasks. The Entropic prior is
estimated by Equation (3):

log p(θ) ∝ λ

n

n∑
i=1

H(Y | xi, θ) (3)

Automatic Relevance Determination (ARD) Prior - The ARD prior is similar to the Gaussian
prior in that it assumes the weights of the neural net are sampled from a normal distribution with
mean zero, but instead of a fixed variance term for all weights, the ARD prior learns an individual
variance for each weight. The hierarchical model for each weight θi is as follows:

αi ∼ Gamma(a, b)

θi ∼ N (0, α−1
i)

where a, b are hyper-parameters (set to a, b = 1 for this paper). The MAP estimate of the ARD is
shown by Equation (4) (see Section 7.0.1 for full derivation).

log p(θ) ∝ λ
n∑

i=1

log p(θi) where log p(θi) ∝ −1

2

[
log(αi)+αiθ

2
i

]
−(a−1) log(αi)+bαi (4)

3

The ARD prior has a similar form to the Gaussian prior. However, each θ2i now has an αi term
associated with it, which allows the optimizer to determine whether or not the weight should be
regularized. If the weight θi is important, then the value of αi may be small and therefore have a
high variance (and hence more likely to have a larger value). If the weight is deemed irrelevant, the
value of αi will be high, and thus the weight is pushed to zero to minimize the log p(θ).

3.3 Data and Neural Network Architectures

In the section below, we detail the datasets and corresponding neural network architectures used to
test each prior.

California Housing Dataset - The California housing dataset contains 1990 U.S. Census data on
California districts, with 8 numerical features such as median income, house age, and location, used
to predict median house values [12]. We use a two-layer MLP to predict the target variable, with
mean squared error (MSE) as the primary evaluation metric.

Synthetic Categorical Dataset - We use scikit-learn [13] to create a synthetic categorical dataset
with 20 inputs to predict 100 categories, with only 10,000 data points. The goal of this dataset is to
understand how the different priors perform with a smaller sample size and a larger class size. We
use a two-layer MLP to predict the target variable, and accuracy as the primary evaluation metric.

CIFAR Dataset - CIFAR [14] is an image dataset of 60,000 32x32 color images. CIFAR-10
contains 10 classes and 6,000 images per class, while CIFAR-100 contains 100 classes with 600
images per class, making it a much harder classification task given less data per class. We create a
ResNet18-esque architecture (with SiLU activation functions instead of ReLU to ensure a non-zero
second derivative, and a smaller convolution size) to predict image classes in the CIFAR-10/100
dataset. We use accuracy as the primary evaluation metric.

MNIST and Oxford 102 Flowers Dataset - The Oxford 102 Flowers dataset consists of over 8,000
images of flowers, containing 102 categories [15]. MNIST [16] contains 70,000 28x28 black and
white images of handwritten digits. We use both datasets as the input for a variational autoencoder,
where the main evaluation metric is the mean squared error of the reconstructed image.

IMDB Review Sentiment Dataset The IMDB review sentiment dataset contains 50,000 movie
reviews labeled as positive or negative [17]. We use a bidirectional LSTM architecture to predict
the sentiment of the review, with accuracy as the primary evaluation metric.

Beijing Air Quality Dataset - The Beijing air quality dataset contains hourly air quality readings
from 12 monitoring stations in Beijing from 2013 to 2017 [18]. The goal is to predict the PM2.5
value given the previous 24 hours of data. We used both a Transformer and a Unidirectional LSTM
to predict the PM2.5 value, with r2 as the primary evaluation metric.

4 Results

Figure 1 contains the best evaluation metric value on the validation set for each data set and prior 12.
Each cell’s color corresponds to the normalized performance of the prior relative to the other priors

1Because of excessive training time / poor convergence, we were not able to finish the IMDB Smoothness prior test
2Entropic prior was not tested on regression based tasks since entropy is fixed under the assumption of fixed output variance

4

Figure 1: Heatmap of Evaluation Metrics by Dataset and Prior

within the same dataset. Green is the best normalized performance, and red is the worst normalized
performance. The final row provides the average normalized score across all datasets for each prior.

Overall, the Entropic Prior achieves the highest average normalized score of 0.722, followed by the
Smoothness prior (0.601) and no prior (0.609). On average, the L1 and ARD prior under perform
the other priors.

(a) CIFAR 10 (b) CIFAR 100

Figure 2: CIFAR Validation Accuracy per Epoch by Prior

To demonstrate the Entropic’s prior effectiveness, Figure 2 provides the validation accuracy per
epoch by the different priors for both the CIFAR 10 and CIFAR 100 datasets. The Entropic prior is
able to converge to a higher accuracy at a faster rate than the other priors. Further, in Figure 2b,

5

several of the priors start to show signs of overfitting by achieving peak validation accuracy around
epoch 8 and then decreasing. The only priors that do not display this behavior are the L2 and
Entropic prior (with the Entropic prior able to achieve a higher accuracy), demonstrating the
Entropic’s prior ability to avoid overfitting by not being overconfident in its predictions.

4.1 Training Time

Table 1 shows the average training time (seconds) by each prior, with the final row normalized by
using no prior. The Entropic prior has the fastest training time (1.06x slower than using no prior -
although does not include the LSTM / Transformer architectures which were more computationally
intensive to compute priors for in general), followed by the L1 and L2 regularization. The ARD
prior is 2.00x slower, while the Smoothness prior is 7.18x slower, highlighting the challenges of
implementing it in neural nets.

Table 1: Average Epoch Training Time by Prior (seconds)

Dataset and Model No Prior L1 L2 Smooth Entropic ARD

Housing MLP 0.56 0.77 0.68 1.26 – 0.97
Cat MLP 0.23 0.31 0.34 0.76 0.26 0.56
CIFAR-10 CNN 45 50 50 355 47 65
CIFAR-100 CNN 47 50 51 361 47 65
Flowers VAE 4 4 4 7 – 4
MNIST VAE 41 43 43 223 – 52
IMDB Review 39 44 43 – 40 64
Beijing LSTM 25 120 124 523 – 104
Beijing Transformer 58 149 185 610 – 172

Avg. Normalized Training Time 1 1.71 1.80 7.18 1.06 2.00

4.2 Robustness Checks

To check the robustness of our results, we perform the following additional checks to understand
how different inference techniques and datasets impact our results.

Figure 3: ARD Variational Dropout vs
MAP Estimate

ARD Inference Techniques - We use a MAP estimate
to implement the ARD prior. However, other papers [19]
have explored implementing ARD priors using variational
inference techniques. We compare the validation accuracy
of the SiLU Resnet-18 architecture used for the CIFAR
datasets using the method proposed by [19] with the Py-
Torch implementation of [20]. Figure 3 contains the re-
sults. We find the MAP estimate out performs the method
in [19], however we note the original paper achieves a
higher validation accuracy using a larger network, there-
fore further tests may be needed to understand when the

6

ARD prior may improve performance. We also note that
in the original paper, using no ARD slightly outperforms
using the Variational Inference ARD, which is consistent
with our findings in Figure 1.

Figure 4: Imbalanced CIFAR 100 Prior
Performance

Class Imbalance - For all tests using the Entropic prior,
the datasets have balanced classes. Therefore, the En-
tropic prior may succeed since all classes apriori are
equally likely. To test how the Entropic prior performs
in an imbalanced dataset, we create an imbalance version
of the CIFAR 100 dataset, such that the class frequencies
follow an exponential decay, with the largest class having
10x more samples than the smallest class. Figure 4 shows
the results, with the Entropic prior achieving a slightly
better F1 scores than the other priors. However, the mag-
nitude of out performance vs the other priors is smaller
than when the dataset was balanced.

5 Conclusion

In this project, we explored three new priors for neural networks that were previously suggested by
the neural network literature, but had little empirical tests to validate their efficacy. We find that
the Entropic prior performed the best, outperforming the commonly used L1 and L2 regularizors.
Further, we find it does not increase training time significantly, highlighting its potential to be used
in modern neural network settings. The ARD and Smoothness prior showed less promise, with less
performance improvement compared the L1 and L2 regularizors, and higher computational time.
This work is an important step towards understanding how different priors in neural networks impact
task performance. We note future directions for this work include 1) testing more challenging
datasets that can better differentiate between the priors (in particular for LSTMs / Transformers), 2)
exploring different inference techniques beyond MAP, 3) expanding the list of priors tested and 4)
testing how task performance changes when combining several priors (i.e L2 and Entropic) together.

6 Acknowledgments

We would like to thank Professor David Blei and our teaching assistants Yuli Slavutsky, Bohan Wu,
and Sebastian Salazar for their advice and project inspiration this semester.

7

References

[1] David Blei. Probabilistic models and machine learning. Unpublished manuscript, 2025.
[2] Felipe Dennis de Resende Oliveira, Eduardo Luiz Ortiz Batista, and Rui Seara. On the

compression of neural networks using ℓ0-norm regularization and weight pruning. Neural
Networks, 2024. Published online 2024; arXiv preprint: arXiv:2109.05075.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[5] Francesco D’Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why
do we need weight decay in modern deep learning? In Proceedings of the 38th International
Conference on Neural Information Processing Systems, NIPS ’24, Red Hook, NY, USA, 2024.
Curran Associates Inc.

[6] David P. Wipf, Bhaskar D. Rao, and Srikantan Nagarajan. Latent variable bayesian models for
promoting sparsity. IEEE Transactions on Information Theory, 57(9):6236–6255, 2011.

[7] C.M. Bishop. Curvature-driven smoothing: a learning algorithm for feedforward networks.
IEEE Transactions on Neural Networks, 4(5):882–884, 1993.

[8] Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex Syst., 5,
1991.

[9] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to
compute hessian-vector products? In ICLR Blogposts 2024, 2024. https://iclr-
blogposts.github.io/2024/blog/bench-hvp/.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[11] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Founda-
tions and Trends® in Machine Learning, 12(4):307–392, 2019.

[12] R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics Probability Letters,
33(3):291–297, 1997.

[13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton,
Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[14] Alex Krizhevsky. Learning multiple layers of features from tiny images. In Learning Multiple
Layers of Features from Tiny Images, 2009.

[15] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image Processing,
Dec 2008.

8

[16] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[17] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[18] Song Chen. Beijing Multi-Site Air Quality. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5RK5G.

[19] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep
neural networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 2498–2507. JMLR.org, 2017.

[20] Artem Ryzhikov. Holybayes/pytorch_ard, 2018.

[21] Emergent Mind. Automatic relevance determination (ard). https://www.emergentmind.
com/topics/automatic-relevance-determination-ard, 2024. Accessed: 2025-12-18.

[22] David J. C. MacKay and Radford M. Neal. Automatic relevance determination for neural
networks. Technical report, Department of Physics, University of Cambridge, 1994. Original
ARD prior formulation.

7 Appendix

7.0.1 ARD Prior Derivation

αk ∼ Gamma(a, b)

θk | αk ∼ N (0, α−1
k)

LARD(θ, α) = − log p(θ | α)− log p(α) + const

− log p(θ | α) = 1
2

∑
k

(
αkθ

2
k − logαk

)
− log p(α) =

∑
k

(b αk − (a− 1) logαk)

LARD(θ, α) =
∑
k

(
1
2
αkθ

2
k + bαk −

(
a− 1

2

)
logαk

)
+ const

7.1 Additional Sample Validation Charts

9

https://www.emergentmind.com/topics/automatic-relevance-determination-ard
https://www.emergentmind.com/topics/automatic-relevance-determination-ard

Figure 5: California MLP

Figure 6: Synthetic Categorical Data

10

Figure 7: Flowers VAE

Figure 8: MNIST VAE

11

	Abstract
	Introduction
	Methods and Experiment Design
	Models and Inference
	Priors
	Data and Neural Network Architectures

	Results
	Training Time
	Robustness Checks

	Conclusion
	Acknowledgments
	Appendix
	ARD Prior Derivation
	Additional Sample Validation Charts

